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LETTER TO THE EDITOR 

Natural spectral line widths in undamped many-wave systems 

W Wonneberger 
Department of Physics, University of Warwick, Coventry CV4 7AL, UK 

Received 2 May 1974 

Abstract. Edwards’ approach to turbulence is re-interpreted to allow the determination of 
the natural spectral line width of a coupled many-wave system in non-thermal equilibrium. 
The method is applied to the non-resonant feedback laser for which an analytic expression 
for the line width is given. It is also shown that above the threshold region the wave-wave 
coupling provides the dominant noise source. 

An undamped wave (self-sustained oscillation) produced by a non-linear instability 
mechanism has zero spectral line width in the context of a deterministic description. 
In reality, the line width is, of course, finite. Even if one eliminates all external pertur- 
bations a lower bound to the line width is given by the natural (or intrinsic) line width. 

From the theory of the single-mode laser it is known that the natural line width 
comes about by internal noise such as spontaneous emissior, processes which necessitate 
a stochastic description. Such a formulation can be given using generalized Langevin 
equations (Haken 1966, Lax 1967), the Fokker-Planck (FP) approach (Risken 1966, 
Lax 1967), or density matrix equations (Scully and Lamb 1967, Gordon 1967). These 
methods successfully established all statistical properties of a single undamped wave 
as realized in the single-mode laser (for reviews cf Arecchi and Schulz-Dubois 1972, 
Risken 1970, Haken 1970). Specifically the spectral line width was found to be given by 

where (I) is the mean intensity, q the total strength of the fluctuating forces appearing 
in the Langevin equation for the amplitude and zL(a) the line width factor, which as 
a function of the pumping parameter a (for its definition see Risken 1966) decreases 
monotonically from the value 2 far below threshold (a  << - 1)  to the value 1 far above 
threshold (a >> 1). The problem then arises how to extend the result of equation (1 )  to 
the case of several undamped waves, which since they occur at a state far from thermal 
equilibrium are strongly coupled. 

Nobody has managed so far to apply the above mentioned basic methods to the 
spectral line width problem of coupled multi-wave systems. Especially, it seems rather 
hopeless to solve the multi-wave non-stationary FP  equation since even the single-mode 
equation requires computer calculations (Hempstead and Lax 1967, Risken and Vollmer 
1967). It is therefore necessary to adopt approximation schemes similar to those of 
many-body theory. 

Richter and Grossmann (1972) have put forward a linear response formalism in 
analogy to the dissipation fluctuation theorems of equilibrium statistical mechanics 
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but with the ‘noise energy’ q replacing k,T. Their method gives reasonable results for 
few-wave systems but it cannot be extended to the many-wave case. The many-wave 
case, however, should permit simplifications due to statistical limit theorems. Brunner 
and Paul (1969) apply heuristic averaging procedures to the Heisenberg equations of 
motion of the coupled multi-wave system of a non-resonant feedback laser (Ambart- 
sumyan c’t a1 1969) and obtain, in the threshold region, a form for Aw as given by 
equation (1) with ( I )  = intensity of a single mode and 

X L  = 2.  (2) 

This is the usual result for a linearly damped gaussian process. Since the individual 
modes of a non-resonant feedback laser are thermal (Ambartsumyan et a2 1967), the 
result (equation (2)) seems quite natural. However, it should be pointed out that q is 
still the original fluctuation strength of each mode. Sufficiently far above threshold one 
does, however, expect a renormalization of q to occur as a consequence of the wave- 
wave coupling. 

In this letter, we sketch a method which is capable of solving this problem for the 
case of h’ >> 1 coupled waves. The method is a modification of an approach used in 
turbulence theory by Edwards (1964) and Edwards and McComb (1969). Edwards 
attacks one of the central problems of turbulence theory, namely the determination of 
the wavevector dependence of (u,u-,), ie of the Fourier transform of the (spatial) 
velocity correlation function. He starts by setting up the FP equation for the large 
number of coupled waves U,. He then derives equations for ( U , U - ~ )  involving the 
stationary solution P({ uk)) of this FP equation. The physical basis of his approach is 
provided by the fact that through the wave-wave coupling every wave becomes thermal, 
so that a gaussian distribution Po is the appropriate zeroth-order approximation to P. 
Po is associated with a renormalized free wave FP operator with effective damping 
constants d, and renormalized fluctuation strengths 4,. These are related to the wave 
intensity (u,u_,) by a relation analogous to equation (1) 

One of the missing two equations between these three quantities is provided by the 
energy balance equation which formally follows from the requirement that AP = P -  Po 
does not contribute to (u,u-,). A second equation has been proposed by Edwards 
and McComb (1969) using the principle of maximum entropy. One then ends up with 
a set of two coupled non-linear integral equations which still have to be solved. 

Returning to our problem of the spectral line width of well behaved many-wave 
systems we note a few points in which our problem differs from and, in fact, becomes 
simpler than the turbulence problem. The wave-wave coupling in turbulence theory 
is provided by the U grad U non-linearity of the Navier-Stokes equations. In Fourier 
space this gives a parametric type of wave-wave coupling and causes a cascade energy 
transfer from low wavevectors to high wavevectors. Such a coupling is inappropriate 
for many-wave systems like that of the non-resonant feedback laser. There the wave 
frequencies are almost identical and the interaction comes about by absorption plus 
subsequent re-emission of photons. This gives rise to a tri-linear interaction such that 
the drift vector in the FP equation is given by 
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The index now numbers the modes, D!,’) is the linear gain and M the coupling matrix. 
A tri-linear interaction ensures self-stabilization of the waves and makes it easier to 
compute (u ,u-J  by other means. In fact, we may assume that the ‘spectrum’ (u ,u- , )  
is known. In this case the equivalent of the energy balance equation for tri-linear inter- 
actions together with equation (1’) provide us with a closed set of equations for d, 
and q,, . 

The relation to the spectral line width problem finally is provided by the wave 
equivalent to the quasi-particle hypothesis which states that in a well behaved (non- 
turbulent) many-wave system, the low-lying excitations are weakly damped and associ- 
ated with just one decay constant (exponential decay framework). In our case this 
permits the identification 

The equivalent to the energy balance equation then becomes a closed integral equation 
for the spectral line widths of the many-wave system. We do not go into the details of 
the derivation which will be given elsewhere. 

The equation obtained in this way admits a solution for the non-resonant feedback 
laser where the ‘spectrum’ is practically mode number independent and given by (in 
scaled notation cf Rowlands and Wonneberger, to be published) 

D denotes parabolic cylinder functions. Using this formula, the revised value of the 
line width factor turns out to be given by 

For a << I one has ( z )  << 1 for N >> 1. Thus the second term may be neglected and 
the result as given by equation (2)  is re-obtained. For the practically important case 
a >> 1 we obtain 

rL = a2. (6) 

This demonstrates that the wave-wave coupling has completely changed the fluctuation 
strength to much larger values giving a much larger natural line width. 

The intensity fluctuation line width Am, of each individual wave equals 2 A 0  since 
the wave obeys gaussian statistics. It is noted that Am, behaves similarly to the effective 
intensity fluctuation line width of a single-mode laser (Jakeman and Pike 1971). 

Finally, a qualitatively different result predicted by equation (5) as compared to 
equation (2) is pointed out. For q -+ 0, ie the vanishing of the intrinsic noise (thermal 
noise, vacuum fluctuations and spontaneous emission noise), the spectral line width 
of the single-mode laser (as well as that of the non-resonant feedback laser in the 
Brunner-Paul approximation) vanishes. This is not true for Am using ctL according 
to equation (5). For q + 0, a + a, aL + a2, but a2q remains finite. The physical 
reason for this is that now the wavewave coupling provides the reservoir and the 
associated noise for every wave to have non-vanishing spectral line width. Under 
many experimental situations one has a > 1 and it is this mechanism which then accounts 
for the natural spectral line width of a coupled many-wave system. 
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